Added source files

This commit is contained in:
Juancho
2023-06-07 10:40:50 +09:00
parent 97b2b64d4e
commit 3dc79ae5e6
17 changed files with 2080 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
"patient_side_ips": ["10.198.113.107"]
"patient_side_ports": [2223]
"operator_side_ports": [2223]

View File

@@ -0,0 +1,17 @@
vrep_port: 19998
thread_sampling_time_nsec: 8000000
master_manipulator_label_list: ["0_0"]
vrep_camera_list: ["CameraSmartArm"]
vrep_x_list: ["x"]
vrep_xd_list: ["xd"]
robot_kinematics_interface_prefix_list: ["/arm1_kinematics"]
robot_gripper_interface_prefix_list: ["/arm1/gripper"]
use_interpolator_list: [true]
interpolator_speed_max_list: [50.]
interpolator_speed_min_list: [10.]
interpolator_speed_decay_seconds_list: [5.]
force_feedback_type_list: ["Cartesian"]
# This value is replaced by the enviroment variable VREP_IP
"vrep_ip": "0.0.0.0"

View File

@@ -0,0 +1,7 @@
"robot_ip_address": "172.16.0.2"
"robot_port": 5007
"robot_speed": 20.0
"thread_sampling_time_nsec": 4000000
"q_min": [-2.3093,-1.5133,-2.4937, -2.7478,-2.4800, 0.8521, -2.6895]
"q_max": [ 2.3093, 1.5133, 2.4937, -0.4461, 2.4800, 4.2094, 2.6895]

View File

@@ -0,0 +1,77 @@
// Copyright (c) 2017 Franka Emika GmbH
// Use of this source code is governed by the Apache-2.0 license, see LICENSE
#pragma once
#include <array>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <franka/control_types.h>
#include <franka/duration.h>
#include <franka/robot.h>
#include <franka/robot_state.h>
/**
* @file examples_common.h
* Contains common types and functions for the examples.
*/
/**
* Sets a default collision behavior, joint impedance and Cartesian impedance.
*
* @param[in] robot Robot instance to set behavior on.
*/
void setDefaultBehavior(franka::Robot& robot);
/**
* An example showing how to generate a joint pose motion to a goal position. Adapted from:
* Wisama Khalil and Etienne Dombre. 2002. Modeling, Identification and Control of Robots
* (Kogan Page Science Paper edition).
*/
class MotionGenerator {
public:
/**
* Creates a new MotionGenerator instance for a target q.
*
* @param[in] speed_factor General speed factor in range [0, 1].
* @param[in] q_goal Target joint positions.
*/
MotionGenerator(const double &speed_factor, const Eigen::VectorXd &q_goal);
/**
* Sends joint position calculations
*
* @param[in] robot_state Current state of the robot.
* @param[in] period Duration of execution.
*
* @return Joint positions for use inside a control loop.
*/
franka::JointPositions operator()(const franka::RobotState& robot_state, franka::Duration period);
private:
using Vector7d = Eigen::Matrix<double, 7, 1, Eigen::ColMajor>;
using Vector7i = Eigen::Matrix<int, 7, 1, Eigen::ColMajor>;
void _check_vector_size(const Eigen::VectorXd &q);
bool calculateDesiredValues(double t, Vector7d* delta_q_d) const;
void calculateSynchronizedValues();
static constexpr double kDeltaQMotionFinished = 1e-3; //1e-6;
Vector7d q_goal_;
Vector7d q_start_;
Vector7d delta_q_;
Vector7d dq_max_sync_;
Vector7d t_1_sync_;
Vector7d t_2_sync_;
Vector7d t_f_sync_;
Vector7d q_1_;
double time_ = 0.0;
Vector7d dq_max_ = (Vector7d() << 2.0, 2.0, 2.0, 2.0, 2.5, 2.5, 2.5).finished();
Vector7d ddq_max_start_ = (Vector7d() << 5, 5, 5, 5, 5, 5, 5).finished();
Vector7d ddq_max_goal_ = (Vector7d() << 5, 5, 5, 5, 5, 5, 5).finished();
};

View File

@@ -0,0 +1,74 @@
#pragma once
#include <array>
#include <Eigen/Core>
#include <Eigen/Dense>
#include <vector>
#include <iostream>
#include <dqrobotics/solvers/DQ_QPOASESSolver.h>
#include <memory>
#include "ConstraintsManager.h"
using namespace DQ_robotics;
class QuadraticProgramMotionGenerator
{
private:
using Vector7d = Eigen::Matrix<double, 7, 1, Eigen::ColMajor>;
double speed_factor_;
VectorXd q_;
VectorXd q_dot_;
int n_links_ = 7;
Vector7d q_dot_max_ = (Vector7d() << 2.0, 1.0, 1.5, 1.25, 3, 1.5, 3).finished();
Vector7d q_dot_dot_max_ = (Vector7d() << 8, 8, 8, 8, 8, 8, 8).finished();
double n2_ = 1.0;
double n1_ = 2000*std::sqrt(n2_);
VectorXd N1_ = (VectorXd(7)<<n1_, n1_, n1_, n1_, n1_, n1_, n1_).finished();
VectorXd N2_ = (VectorXd(7)<<n2_, n2_, n2_, n2_, n2_, n2_, n2_).finished();
MatrixXd K1_;
MatrixXd K2_;
MatrixXd H_;
VectorXd lb_;
VectorXd ub_;
MatrixXd A_;
VectorXd b_;
VectorXd f_;
MatrixXd Aeq_;
VectorXd beq_;
MatrixXd I_;
void _check_sizes(const Eigen::VectorXd &q1, const Eigen::VectorXd &q2, const Eigen::VectorXd &q3) const;
int _get_dimensions(const Eigen::VectorXd &q1, const Eigen::VectorXd &q2, const Eigen::VectorXd &q3) const;
void _check_gains();
std::unique_ptr<DQ_QPOASESSolver> solver_;
std::unique_ptr<ConstraintsManager> constraints_manager_;
void _check_speed_factor(const double& speed_factor) const;
public:
QuadraticProgramMotionGenerator(const double &speed_factor,
const Eigen::VectorXd &q_initial,
const Eigen::VectorXd &q_dot_initial,
const Eigen::VectorXd &q_goal);
QuadraticProgramMotionGenerator(const double &speed_factor,
const Eigen::VectorXd &q_dot_initial,
const Eigen::VectorXd &q_dot_goal);
VectorXd compute_new_configuration(const VectorXd& q_goal, const double& T);
VectorXd compute_new_configuration_velocities(const VectorXd& q_dot_goal, const double& T);
void set_gains(const double& n1, const double& n2);
void set_diagonal_gains(const VectorXd& K1, const VectorXd& K2);
};

View File

@@ -0,0 +1,174 @@
#pragma once
#include <dqrobotics/DQ.h>
#include <memory.h>
#include <tuple>
#include <exception>
#include <vector>
#include <franka/robot.h>
#include <franka/gripper.h>
#include <franka/exception.h>
#include "MotionGenerator.h"
#include <thread>
#include "QuadraticProgramMotionGenerator.h"
#include <dqrobotics/robots/FrankaEmikaPandaRobot.h>
#include <atomic>
using namespace DQ_robotics;
using namespace Eigen;
class RobotInterfaceFranka
{
public: enum class MODE{
None=0,
PositionControl,
VelocityControl,
ForceControl,
Homing,
ClearPositions,
};
private:
using Vector7d = Eigen::Matrix<double, 7, 1, Eigen::ColMajor>;
std::string ip_ = "172.16.0.2";
double speed_factor_joint_position_controller_ = 0.2;
double speed_gripper_ = 0.02;
VectorXd desired_joint_positions_;
VectorXd desired_joint_velocities_ = VectorXd::Zero(7);
VectorXd current_joint_positions_;
std::array<double, 7> current_joint_positions_array_;
VectorXd current_joint_velocities_;
std::array<double, 7> current_joint_velocities_array_;
VectorXd current_joint_forces_;
std::array<double, 7> current_joint_forces_array_;
franka::RobotMode robot_mode_;
double time_ = 0;
bool initialize_flag_ = false;
void _check_if_robot_is_connected();
void _check_if_hand_is_connected();
RobotInterfaceFranka::MODE mode_;
void _set_driver_mode(const RobotInterfaceFranka::MODE& mode);
void _restart_default_parameters();
void _update_robot_state(const franka::RobotState& robot_state, const double& time);
std::shared_ptr<franka::Robot> robot_sptr_;
std::shared_ptr<franka::Gripper> gripper_sptr_;
std::unique_ptr<QuadraticProgramMotionGenerator> trajectory_generator_sptr_;
void _setDefaultRobotBehavior();
//bool hand_enabled_ = false;
const VectorXd q_home_configuration_ =(VectorXd(7)<<0, -M_PI_4, 0, -3 * M_PI_4, 0, M_PI_2, M_PI_4).finished();
const VectorXd q_max_ = ((VectorXd(7) << 2.3093, 1.5133, 2.4937, -0.4461, 2.4800, 4.2094, 2.6895).finished());
const VectorXd q_min_ = ((VectorXd(7) << -2.3093,-1.5133,-2.4937, -2.7478,-2.4800, 0.8521, -2.6895).finished());
const VectorXd q_min_dot_ = ((VectorXd(7) << -2, -1, -1.5, -1.25, -3, -1.5, -3).finished());
const VectorXd q_max_dot_ = ((VectorXd(7) << 2, 1, 1.5, 1.25, 3, 1.5, 3).finished());
const double samples_ = 20;
VectorXd desired_mean_joint_positions_;
bool verbose_ = true;
std::string status_message_ = " ";
void _update_status_message(const std::string& message, const bool& verbose = true);
//-------To handle the threads-----------------
void _start_joint_position_control_mode();
std::thread joint_position_control_mode_thread_;
void _start_joint_position_control_thread();
std::atomic<bool> finish_motion_;
void _start_echo_robot_state_mode();
std::thread echo_robot_state_mode_thread_;
void _start_echo_robot_state_mode_thread();
std::atomic<bool> finish_echo_robot_state_;
void _finish_echo_robot_state();
void _start_joint_velocity_control_mode();
std::thread joint_velocity_control_mode_thread_;
void _start_joint_velocity_control_thread();
//----------------------------------------------
VectorXd _compute_recursive_mean(const double& samples, const VectorXd& q);
VectorXd _read_once_smooth_initial_positions(const double& samples);
public:
enum HAND{ON=0, OFF};
enum CONNECTION{AUTOMATIC};
enum GRIPPER_STATES{WIDTH=0, MAX_WIDTH=1};
RobotInterfaceFranka() = delete;
RobotInterfaceFranka(const RobotInterfaceFranka&) = delete;
RobotInterfaceFranka& operator= (const RobotInterfaceFranka&) = delete;
RobotInterfaceFranka(const std::string &ROBOT_IP, const MODE& mode, const HAND& hand = ON);
VectorXd read_once_initial_positions();
VectorXd get_joint_target_positions();
void move_robot_to_target_joint_positions(const VectorXd& q_target);
double read_gripper(const GRIPPER_STATES& gripper_state = WIDTH);
bool read_grasped_status();
void set_gripper(const double& width);
void gripper_homing();
VectorXd get_home_robot_configuration();
std::string get_status_message();
std::string get_robot_mode();
void finish_motion();
std::shared_ptr<franka::Robot> get_robot_pointer();
//--------sas compatible methods----------//
VectorXd get_joint_positions();
VectorXd get_joint_velocities();
VectorXd get_joint_forces();
double get_time();
void set_target_joint_positions(const VectorXd& set_target_joint_positions_rad);
void connect();
void initialize();
void deinitialize();
void disconnect();
void set_target_joint_velocities(const VectorXd& target_joint_velocities);
/* To be implemented
std::tuple<VectorXd, VectorXd> get_joint_limits() const;
void set_joint_limits(const std::tuple<VectorXd, VectorXd>& joint_limits);
*/
};

View File

@@ -0,0 +1,89 @@
#pragma once
#include <exception>
#include <tuple>
#include <atomic>
#include <vector>
#include <memory>
#include <dqrobotics/DQ.h>
#include <sas_robot_driver/sas_robot_driver.h>
#include "robot_interface_franka.h"
using namespace DQ_robotics;
using namespace Eigen;
namespace sas
{
struct RobotDriverFrankaConfiguration
{
std::string ip_address;
int port;
double speed;
};
class RobotDriverFranka: public RobotDriver
{
private:
RobotDriverFrankaConfiguration configuration_;
std::shared_ptr<RobotInterfaceFranka> robot_driver_interface_sptr_ = nullptr;
//Joint positions
VectorXd joint_positions_;
//VectorXd joint_velocities_;
VectorXd end_effector_pose_;
std::vector<double> joint_positions_buffer_;
std::vector<double> end_effector_pose_euler_buffer_;
std::vector<double> end_effector_pose_homogenous_transformation_buffer_;
//DQ _homogenous_vector_to_dq(const VectorXd& homogenousvector) const;
//VectorXd _dq_to_homogenous_vector(const DQ& pose) const;
//VectorXd _get_end_effector_pose_homogenous_transformation();
//double _sign(const double &a) const;
// void _connect(); //Throws std::runtime_error()
// void _motor_on(); //Throws std::runtime_error()
// void _motor_off() noexcept; //No exceptions should be thrown in the path to turn off the robot
// void _set_speed(const float& speed, const float& acceleration, const float& deacceleration); //Throws std::runtime_error()
// void _slave_mode_on(int mode); //Throws std::runtime_error()
//void _slave_mode_off() noexcept; //No exceptions should be thrown in the path to turn off the robot
public:
const static int SLAVE_MODE_JOINT_CONTROL;
const static int SLAVE_MODE_END_EFFECTOR_CONTROL;
RobotDriverFranka(const RobotDriverFranka&)=delete;
RobotDriverFranka()=delete;
~RobotDriverFranka();
RobotDriverFranka(const RobotDriverFrankaConfiguration& configuration, std::atomic_bool* break_loops);
VectorXd get_joint_positions() override;
void set_target_joint_positions(const VectorXd& desired_joint_positions_rad) override;
VectorXd get_joint_velocities() override;
void set_target_joint_velocities(const VectorXd& desired_joint_velocities) override;
VectorXd get_joint_forces() override;
void connect() override;
void disconnect() override;
void initialize() override;
void deinitialize() override;
bool set_end_effector_pose_dq(const DQ& pose);
DQ get_end_effector_pose_dq();
};
}

View File

@@ -0,0 +1,7 @@
<launch>
<rosparam file="$(find sas_robot_driver_franka)/cfg/sas_operator_side_receiver.yaml" command="load" ns="sas_operator_side_receiver"/>
<node pkg="sas_operator_side_receiver" type="sas_operator_side_receiver_udp_node" name="sas_operator_side_receiver"/>
</launch>

View File

@@ -0,0 +1,8 @@
<launch>
<node pkg="sas_patient_side_manager" type="sas_patient_side_manager_node" name="sas_patient_side_manager">
<rosparam file="$(find sas_robot_driver_franka)/cfg/sas_patient_side_manager.yaml" command="load"/>
<rosparam subst_value="true">
vrep_ip: $(env VREP_IP)
</rosparam>
</node>
</launch>

View File

@@ -0,0 +1,5 @@
<launch>
<rosparam file="$(find sas_robot_driver_franka)/cfg/sas_robot_driver_franka_1.yaml" command="load"/>
<node pkg="sas_robot_driver_franka" type="sas_robot_driver_franka_node" name="franka_1">
</node>
</launch>

84
package.xml Normal file
View File

@@ -0,0 +1,84 @@
<?xml version="1.0"?>
<package format="2">
<name>sas_robot_driver_franka</name>
<version>0.0.0</version>
<description>The sas_driver_franka package</description>
<!-- One maintainer tag required, multiple allowed, one person per tag -->
<!-- Example: -->
<!-- <maintainer email="jane.doe@example.com">Jane Doe</maintainer> -->
<maintainer email="moonshot@todo.todo">moonshot</maintainer>
<!-- One license tag required, multiple allowed, one license per tag -->
<!-- Commonly used license strings: -->
<!-- BSD, MIT, Boost Software License, GPLv2, GPLv3, LGPLv2.1, LGPLv3 -->
<license>TODO</license>
<!-- Url tags are optional, but multiple are allowed, one per tag -->
<!-- Optional attribute type can be: website, bugtracker, or repository -->
<!-- Example: -->
<!-- <url type="website">http://wiki.ros.org/sas_driver_franka</url> -->
<!-- Author tags are optional, multiple are allowed, one per tag -->
<!-- Authors do not have to be maintainers, but could be -->
<!-- Example: -->
<!-- <author email="jane.doe@example.com">Jane Doe</author> -->
<!-- The *depend tags are used to specify dependencies -->
<!-- Dependencies can be catkin packages or system dependencies -->
<!-- Examples: -->
<!-- Use depend as a shortcut for packages that are both build and exec dependencies -->
<!-- <depend>roscpp</depend> -->
<!-- Note that this is equivalent to the following: -->
<!-- <build_depend>roscpp</build_depend> -->
<!-- <exec_depend>roscpp</exec_depend> -->
<!-- Use build_depend for packages you need at compile time: -->
<!-- <build_depend>message_generation</build_depend> -->
<!-- Use build_export_depend for packages you need in order to build against this package: -->
<!-- <build_export_depend>message_generation</build_export_depend> -->
<!-- Use buildtool_depend for build tool packages: -->
<!-- <buildtool_depend>catkin</buildtool_depend> -->
<!-- Use exec_depend for packages you need at runtime: -->
<!-- <exec_depend>message_runtime</exec_depend> -->
<!-- Use test_depend for packages you need only for testing: -->
<!-- <test_depend>gtest</test_depend> -->
<!-- Use doc_depend for packages you need only for building documentation: -->
<!-- <doc_depend>doxygen</doc_depend> -->
<buildtool_depend>catkin</buildtool_depend>
<build_depend>roscpp</build_depend>
<build_depend>rospy</build_depend>
<build_depend>std_msgs</build_depend>
<build_depend>sas_clock</build_depend>
<build_depend>sas_robot_driver</build_depend>
<build_depend>sas_common</build_depend>
<build_depend>sas_patient_side_manager</build_depend>
<build_export_depend>roscpp</build_export_depend>
<build_export_depend>rospy</build_export_depend>
<build_export_depend>std_msgs</build_export_depend>
<build_export_depend>sas_clock</build_export_depend>
<build_export_depend>sas_robot_driver</build_export_depend>
<build_export_depend>sas_common</build_export_depend>
<build_export_depend>sas_patient_side_manager</build_export_depend>
<exec_depend>roscpp</exec_depend>
<exec_depend>rospy</exec_depend>
<exec_depend>std_msgs</exec_depend>
<exec_depend>sas_clock</exec_depend>
<exec_depend>sas_robot_driver</exec_depend>
<exec_depend>sas_common</exec_depend>
<exec_depend>sas_patient_side_manager</exec_depend>
<!-- The export tag contains other, unspecified, tags -->
<export>
<!-- Other tools can request additional information be placed here -->
</export>
</package>

142
src/motion_generator.cpp Normal file
View File

@@ -0,0 +1,142 @@
// Copyright (c) 2017 Franka Emika GmbH
// Use of this source code is governed by the Apache-2.0 license, see LICENSE
#include "MotionGenerator.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <franka/exception.h>
#include <franka/robot.h>
void setDefaultBehavior(franka::Robot& robot) {
robot.setCollisionBehavior(
{{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}},
{{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}},
{{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}},
{{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}});
robot.setJointImpedance({{3000, 3000, 3000, 2500, 2500, 2000, 2000}});
robot.setCartesianImpedance({{3000, 3000, 3000, 300, 300, 300}});
}
MotionGenerator::MotionGenerator(const double &speed_factor, const Eigen::VectorXd &q_goal)
{
_check_vector_size(q_goal);
q_goal_ = q_goal;
dq_max_ *= speed_factor;
ddq_max_start_ *= speed_factor;
ddq_max_goal_ *= speed_factor;
dq_max_sync_.setZero();
q_start_.setZero();
delta_q_.setZero();
t_1_sync_.setZero();
t_2_sync_.setZero();
t_f_sync_.setZero();
q_1_.setZero();
}
bool MotionGenerator::calculateDesiredValues(double t, Vector7d* delta_q_d) const {
Vector7i sign_delta_q;
sign_delta_q << delta_q_.cwiseSign().cast<int>();
Vector7d t_d = t_2_sync_ - t_1_sync_;
Vector7d delta_t_2_sync = t_f_sync_ - t_2_sync_;
std::array<bool, 7> joint_motion_finished{};
for (size_t i = 0; i < 7; i++) {
if (std::abs(delta_q_[i]) < kDeltaQMotionFinished) {
(*delta_q_d)[i] = 0;
joint_motion_finished[i] = true;
} else {
if (t < t_1_sync_[i]) {
(*delta_q_d)[i] = -1.0 / std::pow(t_1_sync_[i], 3.0) * dq_max_sync_[i] * sign_delta_q[i] *
(0.5 * t - t_1_sync_[i]) * std::pow(t, 3.0);
} else if (t >= t_1_sync_[i] && t < t_2_sync_[i]) {
(*delta_q_d)[i] = q_1_[i] + (t - t_1_sync_[i]) * dq_max_sync_[i] * sign_delta_q[i];
} else if (t >= t_2_sync_[i] && t < t_f_sync_[i]) {
(*delta_q_d)[i] =
delta_q_[i] + 0.5 *
(1.0 / std::pow(delta_t_2_sync[i], 3.0) *
(t - t_1_sync_[i] - 2.0 * delta_t_2_sync[i] - t_d[i]) *
std::pow((t - t_1_sync_[i] - t_d[i]), 3.0) +
(2.0 * t - 2.0 * t_1_sync_[i] - delta_t_2_sync[i] - 2.0 * t_d[i])) *
dq_max_sync_[i] * sign_delta_q[i];
} else {
(*delta_q_d)[i] = delta_q_[i];
joint_motion_finished[i] = true;
}
}
}
return std::all_of(joint_motion_finished.cbegin(), joint_motion_finished.cend(),
[](bool x) { return x; });
}
void MotionGenerator::calculateSynchronizedValues() {
Vector7d dq_max_reach(dq_max_);
Vector7d t_f = Vector7d::Zero();
Vector7d delta_t_2 = Vector7d::Zero();
Vector7d t_1 = Vector7d::Zero();
Vector7d delta_t_2_sync = Vector7d::Zero();
Vector7i sign_delta_q;
sign_delta_q << delta_q_.cwiseSign().cast<int>();
for (size_t i = 0; i < 7; i++) {
if (std::abs(delta_q_[i]) > kDeltaQMotionFinished) {
if (std::abs(delta_q_[i]) < (3.0 / 4.0 * (std::pow(dq_max_[i], 2.0) / ddq_max_start_[i]) +
3.0 / 4.0 * (std::pow(dq_max_[i], 2.0) / ddq_max_goal_[i]))) {
dq_max_reach[i] = std::sqrt(4.0 / 3.0 * delta_q_[i] * sign_delta_q[i] *
(ddq_max_start_[i] * ddq_max_goal_[i]) /
(ddq_max_start_[i] + ddq_max_goal_[i]));
}
t_1[i] = 1.5 * dq_max_reach[i] / ddq_max_start_[i];
delta_t_2[i] = 1.5 * dq_max_reach[i] / ddq_max_goal_[i];
t_f[i] = t_1[i] / 2.0 + delta_t_2[i] / 2.0 + std::abs(delta_q_[i]) / dq_max_reach[i];
}
}
double max_t_f = t_f.maxCoeff();
for (size_t i = 0; i < 7; i++) {
if (std::abs(delta_q_[i]) > kDeltaQMotionFinished) {
double a = 1.5 / 2.0 * (ddq_max_goal_[i] + ddq_max_start_[i]);
double b = -1.0 * max_t_f * ddq_max_goal_[i] * ddq_max_start_[i];
double c = std::abs(delta_q_[i]) * ddq_max_goal_[i] * ddq_max_start_[i];
double delta = b * b - 4.0 * a * c;
if (delta < 0.0) {
delta = 0.0;
}
dq_max_sync_[i] = (-1.0 * b - std::sqrt(delta)) / (2.0 * a);
t_1_sync_[i] = 1.5 * dq_max_sync_[i] / ddq_max_start_[i];
delta_t_2_sync[i] = 1.5 * dq_max_sync_[i] / ddq_max_goal_[i];
t_f_sync_[i] =
(t_1_sync_)[i] / 2.0 + delta_t_2_sync[i] / 2.0 + std::abs(delta_q_[i] / dq_max_sync_[i]);
t_2_sync_[i] = (t_f_sync_)[i] - delta_t_2_sync[i];
q_1_[i] = (dq_max_sync_)[i] * sign_delta_q[i] * (0.5 * (t_1_sync_)[i]);
}
}
}
franka::JointPositions MotionGenerator::operator()(const franka::RobotState& robot_state,
franka::Duration period) {
time_ += period.toSec();
if (time_ == 0.0) {
q_start_ = Vector7d(robot_state.q_d.data());
delta_q_ = q_goal_ - q_start_;
calculateSynchronizedValues();
}
Vector7d delta_q_d;
bool motion_finished = calculateDesiredValues(time_, &delta_q_d);
std::array<double, 7> joint_positions;
Eigen::VectorXd::Map(&joint_positions[0], 7) = (q_start_ + delta_q_d);
franka::JointPositions output(joint_positions);
output.motion_finished = motion_finished;
return output;
}
void MotionGenerator::_check_vector_size(const Eigen::VectorXd &q)
{
if(q.size() != 7)
{
throw std::runtime_error(std::string("Error in MotionGenerator. Input vector must have size 7"));
}
}

View File

@@ -0,0 +1,159 @@
#include "QuadraticProgramMotionGenerator.h"
QuadraticProgramMotionGenerator::QuadraticProgramMotionGenerator(const double &speed_factor,
const Eigen::VectorXd &q_initial,
const Eigen::VectorXd &q_dot_initial,
const Eigen::VectorXd &q_goal)
{
n_links_ = _get_dimensions(q_initial, q_dot_initial, q_goal);
solver_ = std::make_unique<DQ_QPOASESSolver>(DQ_QPOASESSolver());
constraints_manager_ = std::make_unique<ConstraintsManager>(ConstraintsManager(n_links_));
_check_gains();
q_ = q_initial;
q_dot_ = q_dot_initial;
H_ = MatrixXd::Identity(n_links_, n_links_);
lb_ = VectorXd::Zero(n_links_);
ub_ = VectorXd::Zero(n_links_);
I_ = MatrixXd::Identity(n_links_, n_links_);
_check_speed_factor(speed_factor);
speed_factor_ = speed_factor;
q_dot_max_ *= speed_factor_;
q_dot_dot_max_ *= speed_factor_;
K1_ = N1_.asDiagonal();
K2_ = N2_.asDiagonal();
}
QuadraticProgramMotionGenerator::QuadraticProgramMotionGenerator(const double &speed_factor, const VectorXd &q_dot_initial, const VectorXd &q_dot_goal)
{
n_links_ = _get_dimensions(q_dot_initial, q_dot_initial, q_dot_goal);
solver_ = std::make_unique<DQ_QPOASESSolver>(DQ_QPOASESSolver());
constraints_manager_ = std::make_unique<ConstraintsManager>(ConstraintsManager(n_links_));
_check_gains();
q_dot_ = q_dot_initial;
H_ = MatrixXd::Identity(n_links_, n_links_);
lb_ = VectorXd::Zero(n_links_);
ub_ = VectorXd::Zero(n_links_);
I_ = MatrixXd::Identity(n_links_, n_links_);
_check_speed_factor(speed_factor);
speed_factor_ = speed_factor;
q_dot_max_ *= speed_factor_;
q_dot_dot_max_ *= speed_factor_;
K1_ = N1_.asDiagonal();
K2_ = N2_.asDiagonal();
}
void QuadraticProgramMotionGenerator::_check_speed_factor(const double& speed_factor) const
{
if (speed_factor > 1.0)
{
throw std::runtime_error("Speed factor must be <= 1.0");
}
if (speed_factor <= 0.0)
{
throw std::runtime_error("Speed factor must be > 0.0");
}
}
int QuadraticProgramMotionGenerator::_get_dimensions(const Eigen::VectorXd &q1,
const Eigen::VectorXd &q2,
const Eigen::VectorXd &q3) const
{
_check_sizes(q1, q2, q3);
return q1.size();
}
void QuadraticProgramMotionGenerator::set_gains(const double& n1, const double& n2)
{
n1_ = n1;
n2_ = n2;
_check_gains() ;
N1_ <<n1_, n1_, n1_, n1_, n1_, n1_, n1_;
N2_ <<n2_, n2_, n2_, n2_, n2_, n2_, n2_;
K1_ = N1_.asDiagonal();
K2_ = N2_.asDiagonal();
}
void QuadraticProgramMotionGenerator::set_diagonal_gains(const VectorXd& K1, const VectorXd& K2)
{
K1_ = K1.asDiagonal();
K2_ = K2.asDiagonal();
}
void QuadraticProgramMotionGenerator::_check_sizes(const Eigen::VectorXd &q1,
const Eigen::VectorXd &q2,
const Eigen::VectorXd &q3) const
{
if (q1.size() != q2.size() or q1.size() != q3.size() or q2.size() != q3.size())
{
throw std::runtime_error(std::string("Wrong sizes in vectors. "));
}
}
void QuadraticProgramMotionGenerator::_check_gains()
{
if ( std::pow(n1_, 2) - 4*n2_ <= 0)
{
throw std::runtime_error(std::string("Wrong gains!!!. You need to use gains such that n1^2 - 4*n2 > 0. "));
}
}
VectorXd QuadraticProgramMotionGenerator::compute_new_configuration(const VectorXd& q_goal,
const double& T)
{
f_ = K1_*(q_dot_ + K2_*(q_-q_goal)); //f_ = n1_*(q_dot_ + n2_*(q_-q_goal));
for (int i=0; i<n_links_;i++)
{
lb_[i] = std::max( -q_dot_dot_max_[i], (1/T)*(-q_dot_max_[i] - q_dot_[i]));
ub_[i] = std::min( q_dot_dot_max_[i], (1/T)*( q_dot_max_[i] - q_dot_[i]));
}
constraints_manager_->add_inequality_constraint(-I_, -lb_);
constraints_manager_->add_inequality_constraint( I_, ub_);
std::tie(A_, b_) = constraints_manager_->get_inequality_constraints();
auto u = solver_->solve_quadratic_program(H_, f_, A_, b_, Aeq_, beq_);
q_ = q_ +T*q_dot_ +0.5*std::pow(T,2)*u;
q_dot_ = q_dot_ + T*u;
return q_;
}
VectorXd QuadraticProgramMotionGenerator::compute_new_configuration_velocities(const VectorXd &q_dot_goal, const double &T)
{
f_ = 2*K1_*(q_dot_-q_dot_goal);
for (int i=0; i<n_links_;i++)
{
lb_[i] = std::max( -q_dot_dot_max_[i], (1/T)*(-q_dot_max_[i] - q_dot_[i]));
ub_[i] = std::min( q_dot_dot_max_[i], (1/T)*( q_dot_max_[i] - q_dot_[i]));
}
constraints_manager_->add_inequality_constraint(-I_, -lb_);
constraints_manager_->add_inequality_constraint( I_, ub_);
std::tie(A_, b_) = constraints_manager_->get_inequality_constraints();
auto u = solver_->solve_quadratic_program(H_, f_, A_, b_, Aeq_, beq_);
q_dot_ = q_dot_ + T*u;
return q_dot_;
}

View File

@@ -0,0 +1,789 @@
#include "robot_interface_franka.h"
/**
* @brief robot_driver_franka::robot_driver_franka
* @param ROBOT_IP The IP address of the FCI
* @param mode The operation mode {None, PositionControl}.
* @param hand The hand option {ONFinished, OFF}.
*/
RobotInterfaceFranka::RobotInterfaceFranka(const std::string &ROBOT_IP,
const MODE& mode,
const HAND& hand):ip_(ROBOT_IP),mode_(mode)
{
_set_driver_mode(mode);
if (hand == RobotInterfaceFranka::HAND::ON)
{
gripper_sptr_ = std::make_shared<franka::Gripper>(ip_);
}
robot_sptr_ = std::make_shared<franka::Robot>(ip_);
_setDefaultRobotBehavior();
/*
std::cout<<"---------------------------------------------------------------"<<std::endl;
std::cout<<"The connection is not automatic. Expected Workflow: "<<std::endl;
std::cout<<"franka_driver.connect(); "<<std::endl;
std::cout<<"franka_driver.initialize(); "<<std::endl;
std::cout<<" "<<std::endl;
std::cout<<"franka_driver.deinitialize(); "<<std::endl;
std::cout<<"franka_driver.disconnect(); "<<std::endl;
std::cout<<"---------------------------------------------------------------"<<std::endl;
*/
std::cout<<"-----------------------------------------------------------------"<<std::endl;
std::cout<<"RobotInterfaceFranka is brought to you by Juan Jose Quiroz Omana."<<std::endl;
std::cout<<" "<<std::endl;
std::cout<<"-----------------------------------------------------------------"<<std::endl;
finish_motion_ = false;
finish_echo_robot_state_ = false;
}
/**
* @brief robot_driver_franka::_set_driver_mode sets the mode.
* @param mode
*/
void RobotInterfaceFranka::_set_driver_mode(const RobotInterfaceFranka::MODE& mode)
{
switch (mode)
{
case RobotInterfaceFranka::MODE::None:
mode_ = mode;
break;
case RobotInterfaceFranka::MODE::PositionControl:
mode_ = mode;
break;
case RobotInterfaceFranka::MODE::VelocityControl:
mode_ = mode;
break;
case RobotInterfaceFranka::MODE::ClearPositions:
throw std::runtime_error(std::string("The robot_driver_franka::ClearPositions is not available. "));
break;
case RobotInterfaceFranka::MODE::Homing:
throw std::runtime_error(std::string("The robot_driver_franka::Homing is not available. "));
break;
case RobotInterfaceFranka::MODE::ForceControl:
throw std::runtime_error(std::string("The robot_driver_franka::ForceControl is not available. "));
break;
}
}
/**
* @brief robot_driver_franka::connect starts the connection with the robot and starts the robot state thread.
*/
void RobotInterfaceFranka::connect()
{
_update_status_message("Connecting...", verbose_);
current_joint_positions_ = read_once_initial_positions(); //_read_once_smooth_initial_positions(1000);
desired_joint_positions_ = current_joint_positions_;
desired_joint_velocities_ = VectorXd::Zero(7);
_update_status_message("Connected.", verbose_);
_start_echo_robot_state_mode_thread(); // start_robot_state_loop to read joints without moving the robot;
}
/**
* @brief robot_driver_franka::disconnect stops all loops threads. Use this method after to run deinitialize().
*/
void RobotInterfaceFranka::disconnect()
{
_update_status_message("Disconnecting...", verbose_);
_finish_echo_robot_state();
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
if (joint_position_control_mode_thread_.joinable())
{
joint_position_control_mode_thread_.join();
}
if (echo_robot_state_mode_thread_.joinable())
{
echo_robot_state_mode_thread_.join();
}
if (joint_velocity_control_mode_thread_.joinable())
{
joint_velocity_control_mode_thread_.join();
}
_update_status_message("Disconnected.", verbose_);
_restart_default_parameters();
}
void RobotInterfaceFranka::set_target_joint_velocities(const VectorXd &target_joint_velocities)
{
desired_joint_velocities_ = target_joint_velocities;
}
/**
* @brief robot_driver_franka::_restart_default_parameters
*/
void RobotInterfaceFranka::_restart_default_parameters()
{
finish_motion_ = false;
finish_echo_robot_state_ = false;
initialize_flag_ = false;
time_ = 0;
}
/**
* @brief robot_driver_franka::_compute_recursive_mean computes the recursive mean of a vector
* @param n The number of samples
* @param q The vector
* @return The recursive mean of n samples.
*/
VectorXd RobotInterfaceFranka::_compute_recursive_mean(const double& n, const VectorXd& q)
{
//Vector7d qm;
Vector7d qmean;
for (int i=0;i<q.size();i++)
{
//qm[i] = (1/n)*((n-1)*q[i] + q[i]);
qmean[i] = (1/n)*((n-1)*q[i] + q[i]);
}
return qmean;
}
/**
* @brief robot_driver_franka::_start_joint_position_control_thread
*/
void RobotInterfaceFranka::_start_joint_position_control_thread()
{
finish_motion_ = false;
_update_status_message("checking joint position control thread",verbose_);
if (joint_position_control_mode_thread_.joinable())
{
joint_position_control_mode_thread_.join();
}
_update_status_message("Starting joint position control thread",verbose_);
joint_position_control_mode_thread_ = std::thread(&RobotInterfaceFranka::_start_joint_position_control_mode, this);
}
void RobotInterfaceFranka::_start_joint_velocity_control_thread()
{
finish_motion_ = false;
_update_status_message("checking joint velocity control thread",verbose_);
if (joint_velocity_control_mode_thread_.joinable())
{
joint_velocity_control_mode_thread_.join();
}
_update_status_message("Starting joint velocity control thread",verbose_);
joint_velocity_control_mode_thread_ = std::thread(&RobotInterfaceFranka::_start_joint_velocity_control_mode, this);
}
/**
* @brief robot_driver_franka::_start_echo_robot_state_mode_thread
*/
void RobotInterfaceFranka::_start_echo_robot_state_mode_thread()
{
finish_echo_robot_state_ = false;
_update_status_message("Checking echo robot state thread",verbose_);
if (echo_robot_state_mode_thread_.joinable())
{
echo_robot_state_mode_thread_.join();
}
_update_status_message("Starting echo robot state thread",verbose_);
echo_robot_state_mode_thread_ = std::thread(&RobotInterfaceFranka::_start_echo_robot_state_mode, this);
}
/**
* @brief robot_driver_franka::finish_motion
*/
void RobotInterfaceFranka::finish_motion()
{
_update_status_message("Ending control loop.",verbose_);
for (int i=0;i<1000;i++)
{
set_target_joint_positions(current_joint_positions_);
set_target_joint_velocities(VectorXd::Zero(7));
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
finish_motion_ = true;
}
/**
* @brief robot_driver_franka::get_robot_pointer
* @return
*/
std::shared_ptr<franka::Robot> RobotInterfaceFranka::get_robot_pointer()
{
return robot_sptr_;
}
/**
* @brief robot_driver_franka::_finish_echo_robot_state
*/
void RobotInterfaceFranka::_finish_echo_robot_state()
{
_update_status_message("Finishing echo robot state.",verbose_);
finish_echo_robot_state_ = true;
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
}
/**
* @brief robot_driver_franka::deinitialize
*/
void RobotInterfaceFranka::deinitialize()
{
_update_status_message("Deinitializing....",verbose_);
initialize_flag_ = false;
switch (mode_)
{
case RobotInterfaceFranka::MODE::None:
break;
case RobotInterfaceFranka::MODE::PositionControl:
finish_motion();
break;
case RobotInterfaceFranka::MODE::VelocityControl:
finish_motion();
break;
case RobotInterfaceFranka::MODE::ClearPositions:
throw std::runtime_error(std::string("The robot_driver_franka::ClearPositions is not available. "));
break;
case RobotInterfaceFranka::MODE::Homing:
throw std::runtime_error(std::string("The robot_driver_franka::Homing is not available. "));
break;
case RobotInterfaceFranka::MODE::ForceControl:
throw std::runtime_error(std::string("The robot_driver_franka::ForceControl is not available. "));
break;
}
_update_status_message("Deinitialized.",verbose_);
}
/**
* @brief robot_driver_franka::initialize
*/
void RobotInterfaceFranka::initialize()
{
_update_status_message("Initializing....",verbose_);
initialize_flag_ = true;
switch (mode_)
{
case RobotInterfaceFranka::MODE::None:
break;
case RobotInterfaceFranka::MODE::PositionControl:
_finish_echo_robot_state();
_start_joint_position_control_thread();
break;
case RobotInterfaceFranka::MODE::VelocityControl:
_finish_echo_robot_state();
_start_joint_velocity_control_thread();
break;
case RobotInterfaceFranka::MODE::ClearPositions:
throw std::runtime_error(std::string("The robot_driver_franka::ClearPositions is not available. "));
break;
case RobotInterfaceFranka::MODE::Homing:
throw std::runtime_error(std::string("The robot_driver_franka::Homing is not available. "));
break;
case RobotInterfaceFranka::MODE::ForceControl:
throw std::runtime_error(std::string("The robot_driver_franka::ForceControl is not available. "));
break;
}
_update_status_message("Initialized.",verbose_);
}
/**
* @brief robot_driver_franka::_update_robot_state
* @param robot_state
* @param time
*/
void RobotInterfaceFranka::_update_robot_state(const franka::RobotState &robot_state, const double& time)
{
current_joint_positions_array_ = robot_state.q_d;
current_joint_positions_ = Eigen::Map<VectorXd>(current_joint_positions_array_.data(), 7);
current_joint_velocities_array_ = robot_state.dq_d;
current_joint_velocities_ = Eigen::Map<VectorXd>(current_joint_velocities_array_.data(), 7);
current_joint_forces_array_ = robot_state.tau_J;
current_joint_forces_ = Eigen::Map<VectorXd>(current_joint_forces_array_.data(), 7);
robot_mode_ = robot_state.robot_mode;
time_ = time;
}
/**
* @brief robot_driver_franka::_start_echo_robot_state_mode
*/
void RobotInterfaceFranka::_start_echo_robot_state_mode(){
double time = 0.0;
size_t count = 0;
double t1 = 0.0;
try {
robot_sptr_->read([&t1, &count, &time, this](const franka::RobotState& robot_state) {
if (count == 0)
{
t1 = robot_state.time.toSec();
}
time = robot_state.time.toSec() - t1;
_update_robot_state(robot_state, time);
count++;
return !finish_echo_robot_state_;
});
_update_status_message("Finished echo_robot_state.",verbose_);
}
catch (franka::Exception const& e) {
std::cout << e.what() << std::endl;
}
}
/**
* @brief robot_driver_franka::_start_joint_position_control_mode
*/
void RobotInterfaceFranka::_start_joint_position_control_mode()
{
std::array<double, 7> initial_position;
VectorXd target_position;
double time = 0.0;
VectorXd q = VectorXd::Zero(7);
franka::RobotState state = robot_sptr_->readOnce();
q = Map<VectorXd>(state.q_d.data(), 7);
desired_joint_positions_ = q;
VectorXd q_dot = VectorXd::Zero(7);
_update_status_message("Starting joint position control mode EXPERIMENTAL",verbose_);
trajectory_generator_sptr_ =
std::make_unique<QuadraticProgramMotionGenerator>(1.0, q, q_dot, q);
double n2 = 2;
double n1 = 1000*std::sqrt(n2);
VectorXd K2 = (VectorXd(7)<<n2, n2, n2, n2, n2, n2, n2).finished();
VectorXd K1 = (VectorXd(7)<<n1, n1, n1, n1, 3*n1, 3*n1, 3*n1).finished();
trajectory_generator_sptr_->set_diagonal_gains(K1, K2);
finish_motion_ = false;
int retry_counter = 0;
int TIMEOUT_IN_MILISECONDS = 5000;
try {
robot_sptr_->control( //------------------------------------------------------------
[&initial_position, &time, this](const franka::RobotState& robot_state,
franka::Duration period) -> franka::JointPositions {
time += period.toSec();
double T = period.toSec();
auto new_q = trajectory_generator_sptr_->compute_new_configuration(desired_joint_positions_, T);
if (time == 0.0) {
initial_position = robot_state.q_d;
new_q = Eigen::Map<VectorXd>(initial_position.data(), 7);
}
franka::JointPositions output = {{new_q[0], new_q[1],
new_q[2], new_q[3],
new_q[4], new_q[5],
new_q[6]}};
if (time == 0.0) {
_update_status_message("joint position control mode running! ",verbose_);
}
if (finish_motion_) {
_update_status_message("Motion finished",verbose_);
finish_motion_ = false;
return franka::MotionFinished(output);
}else
{
_update_robot_state(robot_state, time);
}
return output;
}
);//------------------------------------------------------------
}
catch (franka::Exception const& e) {
std::cout << e.what() << std::endl;
}
std::this_thread::sleep_for(std::chrono::milliseconds(TIMEOUT_IN_MILISECONDS));
retry_counter++;
}
/**
* @brief RobotInterfaceFranka::_start_joint_velocity_control_mode
*/
void RobotInterfaceFranka::_start_joint_velocity_control_mode()
{
finish_motion_ = false;
std::array<double, 7> initial_velocity;
VectorXd q_dot_initial = VectorXd::Zero(7);
VectorXd q_dot = VectorXd::Zero(7);
desired_joint_velocities_ = VectorXd::Zero(7);
trajectory_generator_sptr_ =
std::make_unique<QuadraticProgramMotionGenerator>(0.8, q_dot_initial, q_dot);
double n2 = 1;
double n1 = 10*std::sqrt(n2);
VectorXd K2 = (VectorXd(7)<<n2, n2, n2, n2, n2, n2, n2).finished();
VectorXd K1 = (VectorXd(7)<<n1, n1, n1, n1, 2*n1, 2*n1, 2*n1).finished();
trajectory_generator_sptr_->set_diagonal_gains(K1, K2);
_update_status_message("Starting joint velocity control mode EXPERIMENTAL",verbose_);
try {
double time = 0.0;
robot_sptr_->control(
[&initial_velocity, &time, this](const franka::RobotState& robot_state, franka::Duration period) -> franka::JointVelocities {
time += period.toSec();
double T = period.toSec();
auto new_u = trajectory_generator_sptr_->compute_new_configuration_velocities(desired_joint_velocities_, T);
franka::JointVelocities velocities = {{new_u[0], new_u[1],
new_u[2], new_u[3],
new_u[4], new_u[5],
new_u[6]}};
if (time == 0.0) {
_update_status_message("joint velocity control mode running! ",verbose_);
}
if (finish_motion_) {
_update_status_message("Motion finished",verbose_);
finish_motion_ = false;
return franka::MotionFinished(velocities);
}else
{
_update_robot_state(robot_state, time);
initial_velocity = robot_state.dq_d;
}
return velocities;
});
}
catch (franka::Exception const& e) {
std::cout << e.what() << std::endl;
}
}
/**
* @brief robot_driver_franka::_setDefaultRobotBehavior
*/
void RobotInterfaceFranka::_setDefaultRobotBehavior()
{
robot_sptr_->setCollisionBehavior(
{{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0}},
{{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0}},
{{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}}, {{20.0, 20.0, 20.0, 20.0, 20.0, 20.0}},
{{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}}, {{10.0, 10.0, 10.0, 10.0, 10.0, 10.0}});
robot_sptr_->setJointImpedance({{3000, 3000, 3000, 2500, 2500, 2000, 2000}});
robot_sptr_->setCartesianImpedance({{3000, 3000, 3000, 300, 300, 300}});
}
/**
* @brief robot_driver_franka::_update_status_message
* @param message
* @param verbose
*/
void RobotInterfaceFranka::_update_status_message(const std::string &message, const bool& verbose)
{
status_message_ = message;
std::string base = "RobotInterfaceFranka::";
if(verbose)
{
std::cout<<base+message<<std::endl;
}
}
/**
* @brief robot_driver_franka::get_status_message
* @return
*/
std::string RobotInterfaceFranka::get_status_message()
{
return status_message_;
}
/**
* @brief RobotInterfaceFranka::get_robot_mode
* @return
*/
std::string RobotInterfaceFranka::get_robot_mode()
{
std::string string_robot_mode;
switch (robot_mode_) {
case (franka::RobotMode::kUserStopped):
string_robot_mode = "User stopped";
break;
case (franka::RobotMode::kIdle):
string_robot_mode = "Idle";
break;
case (franka::RobotMode::kMove):
string_robot_mode = "Move";
break;
case (franka::RobotMode::kGuiding):
string_robot_mode = "Guiding";
break;
case (franka::RobotMode::kReflex):
string_robot_mode = "Reflex";
break;
case (franka::RobotMode::kAutomaticErrorRecovery):
string_robot_mode = "Automatic error recovery";
break;
case (franka::RobotMode::kOther):
string_robot_mode = "Other";
break;
}
return string_robot_mode;
}
/**
* @brief robot_driver_franka::_check_if_robot_is_connected
*/
void RobotInterfaceFranka::_check_if_robot_is_connected()
{
if(!robot_sptr_)
throw std::runtime_error("Invalid robot pointer. You must connect(), then initialize(). "
+ std::string("Example: robot_driver_franka(IP, robot_driver_franka::MODE::None, robot_driver_franka::HAND::ON)" ));
}
/**
* @brief robot_driver_franka::_check_if_hand_is_connected
*/
void RobotInterfaceFranka::_check_if_hand_is_connected()
{
if(!gripper_sptr_)
throw std::runtime_error("Invalid hand pointer. You must connect(), then initialize(). "
+ std::string("Example: robot_driver_franka(IP, robot_driver_franka::MODE::None, robot_driver_franka::HAND::ON)" ));
}
/**
* @brief robot_driver_franka::get_joint_positions
* @return
*/
VectorXd RobotInterfaceFranka::get_joint_positions()
{
_check_if_robot_is_connected();
return current_joint_positions_;
}
/**
* @brief robot_driver_franka::get_joint_velocities
* @return
*/
VectorXd RobotInterfaceFranka::get_joint_velocities()
{
_check_if_robot_is_connected();
return current_joint_velocities_;
}
/**
* @brief RobotInterfaceFranka::get_joint_forces
* @return
*/
VectorXd RobotInterfaceFranka::get_joint_forces()
{
_check_if_robot_is_connected();
return current_joint_forces_;
}
/**
* @brief robot_driver_franka::get_time
* @return
*/
double RobotInterfaceFranka::get_time()
{
_check_if_robot_is_connected();
return time_;
}
/**
* @brief robot_driver_franka::_read_once_smooth_initial_positions
* @param samples
* @return
*/
VectorXd RobotInterfaceFranka::_read_once_smooth_initial_positions(const double& samples)
{
_check_if_robot_is_connected();
VectorXd q = VectorXd::Zero(7);
_update_status_message("Reading smooth initial joints...",verbose_);
for (int i=0;i<samples;i++ )
{
franka::RobotState state = robot_sptr_->readOnce();
q = Map<VectorXd>(state.q_d.data(), 7);
q = _compute_recursive_mean(samples, q);
}
return q;
}
/**
* @brief robot_driver_franka::read_once_initial_positions
* @return
*/
VectorXd RobotInterfaceFranka::read_once_initial_positions()
{
_check_if_robot_is_connected();
VectorXd q = VectorXd::Zero(7);
_update_status_message("Reading initial joints...",verbose_);
franka::RobotState state = robot_sptr_->readOnce();
q = Map<VectorXd>(state.q_d.data(), 7);
return q;
}
/**
* @brief robot_driver_franka::move_robot_to_target_joint_positions
* @param q_target
*/
void RobotInterfaceFranka::move_robot_to_target_joint_positions(const VectorXd& q_target)
{
_finish_echo_robot_state();
_check_if_robot_is_connected();
if (!initialize_flag_)
{
throw std::runtime_error(std::string("Error in set_initial_robot_configuration. Driver not initialized. Use initialize(); "));
}
MotionGenerator motion_generator(speed_factor_joint_position_controller_, q_target);
try {
_update_status_message("Moving robot...", verbose_);
robot_sptr_->control(motion_generator);
}
catch (franka::Exception const& e) {
std::cout << e.what() << std::endl;
}
_start_echo_robot_state_mode_thread();
}
/**
* @brief robot_driver_franka::set_joint_target_positions
* @param set_target_joint_positions_rad
*/
void RobotInterfaceFranka::set_target_joint_positions(const VectorXd& set_target_joint_positions_rad)
{
desired_joint_positions_ = set_target_joint_positions_rad;
}
/**
* @brief robot_driver_franka::get_joint_target_positions
* @return
*/
VectorXd RobotInterfaceFranka::get_joint_target_positions()
{
return desired_joint_positions_;
}
/**
* @brief robot_driver_franka::read_gripper
* @param gripper_state
* @return
*/
double RobotInterfaceFranka::read_gripper(const GRIPPER_STATES& gripper_state)
{
_check_if_hand_is_connected();
franka::GripperState state = gripper_sptr_->readOnce();
switch (gripper_state) {
case RobotInterfaceFranka::GRIPPER_STATES::WIDTH:
return state.width;
break;
case RobotInterfaceFranka::GRIPPER_STATES::MAX_WIDTH:
return state.max_width;
break;
default:
throw std::runtime_error(std::string("Wrong argument in sas_robot_driver_franka::read_gripper. "));
break;
}
}
/**
* @brief robot_driver_franka::read_grasped_status
* @return
*/
bool RobotInterfaceFranka::read_grasped_status()
{
_check_if_hand_is_connected();
franka::GripperState state = gripper_sptr_->readOnce();
return state.is_grasped;
}
/**
* @brief robot_driver_franka::set_gripper
* @param width
*/
void RobotInterfaceFranka::set_gripper(const double& width)
{
_check_if_hand_is_connected();
auto gripper_max_width = read_gripper(RobotInterfaceFranka::GRIPPER_STATES::MAX_WIDTH);
if (width > gripper_max_width)
{
throw std::runtime_error(
std::string("You used a width = ") +
std::to_string(width) +
std::string(". Maximum width allowed is ") +
std::to_string(gripper_max_width)
);
}
gripper_sptr_->move(width, speed_gripper_);
}
/**
* @brief robot_driver_franka::gripper_homing
*/
void RobotInterfaceFranka::gripper_homing()
{
_check_if_hand_is_connected();
gripper_sptr_->homing();
}
/**
* @brief robot_driver_franka::get_home_robot_configuration
* @return
*/
VectorXd RobotInterfaceFranka::get_home_robot_configuration()
{
return q_home_configuration_;
}

View File

@@ -0,0 +1,120 @@
#include "sas_robot_driver_franka.h"
#include "sas_clock/sas_clock.h"
#include <dqrobotics/utils/DQ_Math.h>
namespace sas
{
RobotDriverFranka::RobotDriverFranka(const RobotDriverFrankaConfiguration &configuration, std::atomic_bool *break_loops):
RobotDriver(break_loops),
configuration_(configuration)
{
joint_positions_.resize(7);
joint_velocities_.resize(7);
joint_forces_.resize(7);
end_effector_pose_.resize(7);
joint_positions_buffer_.resize(8,0);
end_effector_pose_euler_buffer_.resize(7,0);
end_effector_pose_homogenous_transformation_buffer_.resize(10,0);
std::cout<<configuration.ip_address<<std::endl;
robot_driver_interface_sptr_ = std::make_shared<RobotInterfaceFranka>(configuration.ip_address,
RobotInterfaceFranka::MODE::VelocityControl, //None, PositionControl
RobotInterfaceFranka::HAND::ON);
}
RobotDriverFranka::~RobotDriverFranka()=default;
/**
* @brief
*
*/
void RobotDriverFranka::connect()
{
robot_driver_interface_sptr_ ->connect();
}
/**
* @brief
*
*/
void RobotDriverFranka::initialize()
{
robot_driver_interface_sptr_->initialize();
}
/**
* @brief
*
*/
void RobotDriverFranka::deinitialize()
{
robot_driver_interface_sptr_->deinitialize();
}
/**
* @brief
*
*/
void RobotDriverFranka::disconnect()
{
robot_driver_interface_sptr_->disconnect();
}
/**
* @brief
*
* @return VectorXd
*/
VectorXd RobotDriverFranka::get_joint_positions()
{
return robot_driver_interface_sptr_->get_joint_positions();
}
/**
* @brief
*
* @param desired_joint_positions_rad
*/
void RobotDriverFranka::set_target_joint_positions(const VectorXd& desired_joint_positions_rad)
{
robot_driver_interface_sptr_->set_target_joint_positions(desired_joint_positions_rad);
}
/**
* @brief RobotDriverFranka::get_joint_velocities
* @return
*/
VectorXd RobotDriverFranka::get_joint_velocities()
{
joint_velocities_ = robot_driver_interface_sptr_->get_joint_velocities();
return joint_velocities_;
}
/**
* @brief RobotDriverFranka::set_target_joint_velocities
* @param desired_joint_velocities
*/
void RobotDriverFranka::set_target_joint_velocities(const VectorXd &desired_joint_velocities)
{
desired_joint_velocities_ = desired_joint_velocities;
robot_driver_interface_sptr_->set_target_joint_velocities(desired_joint_velocities);
}
/**
* @brief RobotDriverFranka::get_joint_forces
* @return
*/
VectorXd RobotDriverFranka::get_joint_forces()
{
joint_forces_ = robot_driver_interface_sptr_->get_joint_forces();
return joint_forces_;
}
}

View File

@@ -0,0 +1,90 @@
//#include "ros/ros.h"
//#include "std_msgs/String.h"
#include <sstream>
#include <exception>
#include <dqrobotics/utils/DQ_Math.h>
//#include <dqrobotics/interfaces/json11/DQ_JsonReader.h>
#include <sas_common/sas_common.h>
#include <sas_conversions/eigen3_std_conversions.h>
#include <sas_robot_driver/sas_robot_driver_ros.h>
#include "sas_robot_driver_franka.h"
/*********************************************
* SIGNAL HANDLER
* *******************************************/
#include<signal.h>
static std::atomic_bool kill_this_process(false);
void sig_int_handler(int)
{
kill_this_process = true;
}
int main(int argc, char **argv)
{
if(signal(SIGINT, sig_int_handler) == SIG_ERR)
{
throw std::runtime_error(ros::this_node::getName() + "::Error setting the signal int handler.");
}
ros::init(argc, argv, "sas_robot_driver_franka_node", ros::init_options::NoSigintHandler);
ROS_WARN("=====================================================================");
ROS_WARN("----------------------Juan Jose Quiroz Omana------------------------");
ROS_WARN("=====================================================================");
ROS_INFO_STREAM(ros::this_node::getName()+"::Loading parameters from parameter server.");
ros::NodeHandle nh;
sas::RobotDriverFrankaConfiguration robot_driver_franka_configuration;
sas::get_ros_param(nh,"/robot_ip_address",robot_driver_franka_configuration.ip_address);
// sas::get_ros_param(nh,"/robot_port", robot_driver_franka_configuration.port);
//sas::get_ros_param(nh,"/robot_speed", robot_driver_franka_configuration.speed);
//robot_driver_franka_configuration.ip_address = "172.16.0.2";
//robot_driver_franka_configuration.port = 0;
//robot_driver_franka_configuration.speed = 0.0;
sas::RobotDriverROSConfiguration robot_driver_ros_configuration;
sas::get_ros_param(nh,"/thread_sampling_time_nsec",robot_driver_ros_configuration.thread_sampling_time_nsec);
sas::get_ros_param(nh,"/q_min",robot_driver_ros_configuration.q_min);
sas::get_ros_param(nh,"/q_max",robot_driver_ros_configuration.q_max);
//auto qmin = sas::std_vector_double_to_vectorxd(robot_driver_ros_configuration.q_min);
//auto qmax = sas::std_vector_double_to_vectorxd(robot_driver_ros_configuration.q_max);
//std::vector<double> q_min = {-2.3093,-1.5133,-2.4937, -2.7478,-2.4800, 0.8521, -2.6895};
//std::vector<double> q_max = { 2.3093, 1.5133, 2.4937, -0.4461, 2.4800, 4.2094, 2.6895};
//robot_driver_ros_configuration.thread_sampling_time_nsec = 4000000;
//robot_driver_ros_configuration.q_min = q_min;
//robot_driver_ros_configuration.q_max = q_max;
robot_driver_ros_configuration.robot_driver_provider_prefix = ros::this_node::getName();
try
{
ROS_INFO_STREAM(ros::this_node::getName()+"::Instantiating Franka robot.");
sas::RobotDriverFranka robot_driver_franka(robot_driver_franka_configuration,
&kill_this_process);
//robot_driver_franka.set_joint_limits({qmin, qmax});
ROS_INFO_STREAM(ros::this_node::getName()+"::Instantiating RobotDriverROS.");
sas::RobotDriverROS robot_driver_ros(nh,
&robot_driver_franka,
robot_driver_ros_configuration,
&kill_this_process);
robot_driver_ros.control_loop();
}
catch (const std::exception& e)
{
ROS_ERROR_STREAM(ros::this_node::getName() + "::Exception::" + e.what());
}
return 0;
}

235
src/teleop_franka_node.cpp Normal file
View File

@@ -0,0 +1,235 @@
#include <ros/ros.h>
#include <sas_common/sas_common.h>
#include <sas_robot_kinematics/sas_robot_kinematics_provider.h>
#include <sas_robot_driver/sas_robot_driver_interface.h>
#include <iostream>
#include <Eigen/Dense>
#include <dqrobotics/robots/FrankaEmikaPandaRobot.h>
//#include <dqrobotics/robots/FrankaEmikaPandaMDHRobot.h>
#include <dqrobotics/robot_modeling/DQ_SerialManipulatorMDH.h>
//#include <dqrobotics/solvers/DQ_SerialManipulatorDynamicsGaussPrincipleSolver.h>
#include <dqrobotics/solvers/DQ_QuadraticProgrammingSolver.h>
#include <dqrobotics/interfaces/vrep/DQ_VrepInterface.h>
#include <dqrobotics/interfaces/vrep/robots/FrankaEmikaPandaVrepRobot.h>
#include <thread>
#include <dqrobotics/DQ.h>
#include <dqrobotics/solvers/DQ_QPOASESSolver.h>
#include <dqrobotics/robot_control/DQ_ClassicQPController.h>
#include <chrono>
#include <yaml-cpp/yaml.h>
#include <RobotConstraintsManager.h>
#include "franka_ros_interface.h"
#include <QuadraticProgramMotionGenerator.h>
std::string config_vfi_path = "/home/moonshot/Documents/git/franka_emika/real_franka_developments/real_franka_developments/cfg/vfi_constraints.yaml";
int main(int argc, char **argv)
{
ros::init(argc, argv, "teleop_franka_node");
auto nodehandle = ros::NodeHandle();
sas::RobotKinematicsProvider pose1_provider(nodehandle, "/arm1_kinematics");
//auto franka1_ros = FrankaRosInterface(nodehandle, 50, "/franka_1");
sas::RobotDriverInterface franka1_ros(nodehandle, "/franka_1");
//##########################################################################################
DQ_VrepInterface vi;
vi.connect("10.198.113.159", 19997,100,10);
std::cout << "Starting V-REP simulation..." << std::endl;
vi.start_simulation();
std::this_thread::sleep_for(std::chrono::milliseconds(100));
auto franka_sim = FrankaEmikaPandaVrepRobot("Franka", std::make_shared<DQ_VrepInterface>(vi));
auto robot = franka_sim.kinematics();
DQ xoffset = (1 + E_*0.5*0.21*k_)*(cos((M_PI/4)/2)-k_*sin((M_PI/4)/2));
robot.set_effector(xoffset);
//###########################################################################################
auto manager = RobotConstraintsManager(std::make_shared<DQ_VrepInterface>(vi),
(std::static_pointer_cast<DQ_Kinematics>(std::make_shared<DQ_SerialManipulatorMDH>(robot))),
(std::static_pointer_cast<DQ_VrepRobot>(std::make_shared<FrankaEmikaPandaVrepRobot>(franka_sim))),
config_vfi_path,
RobotConstraintsManager::ORDER::FIRST_ORDER);
//##########################################################################################
//#######------------------------Controller------------------------------------------#######
DQ_QPOASESSolver solver;
DQ_ClassicQPController controller
(std::static_pointer_cast<DQ_Kinematics>(std::make_shared<DQ_SerialManipulatorMDH>(robot)),
std::static_pointer_cast<DQ_QuadraticProgrammingSolver>(std::make_shared<DQ_QPOASESSolver>(solver)));
controller.set_gain(20.0);
controller.set_damping(0.01);
controller.set_control_objective(DQ_robotics::Translation); //DistanceToPlane Translation
controller.set_stability_threshold(0.0001);
//##########################################################################################
//#########################################################################################
DQ xd;
DQ x;
MatrixXd A;
VectorXd b;
VectorXd u;
VectorXd q_u = VectorXd::Zero(7);
VectorXd q;
VectorXd q_dot_initial = VectorXd::Zero(7);
VectorXd q_dot = VectorXd::Zero(7);
while (ros::ok()) {
if (franka1_ros.is_enabled())
{
q = franka1_ros.get_joint_positions();
break;
}
ros::spinOnce();
}
q_u = q;
franka_sim.set_target_configuration_space_positions(q);
vi.set_object_pose("xd", robot.fkm(q));
/*
DQ_QPOASESSolver solver2;
MatrixXd H = MatrixXd::Identity(7, 7);
VectorXd f ;
VectorXd qvrep;
MatrixXd A_;
VectorXd b_;
for (int i=0;i<3000;i++)
{
qvrep = franka_sim.get_configuration_space_positions();
f = 2*0.1*(qvrep-q);
auto u_ = solver2.solve_quadratic_program(H, f, A_, b_, A_, b_);
franka_sim.set_target_configuration_space_velocities(u_);
std::cout<<"initialiazing..."<<std::endl;
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
*/
std::cout<<"-------------------------"<<std::endl;
std::cout<<"Initial q: "<<std::endl;
std::cout<<q.transpose()<<std::endl;
std::cout<<"-------------------------"<<std::endl;
double T = 0.001;
try {
while(ros::ok())
{
if (q.size() == 7)
{
q = franka1_ros.get_joint_positions();
franka_sim.set_target_configuration_space_positions(q);
//q = franka_sim.get_configuration_space_positions();
x = robot.fkm(q);
vi.set_object_pose("effector", x);
if(not pose1_provider.is_enabled())
{
pose1_provider.send_pose(x);
}
pose1_provider.send_reference_frame(robot.get_reference_frame());
try{
xd = pose1_provider.get_desired_pose();
pose1_provider.send_pose(xd);
}
catch(const std::exception& e){
xd = vi.get_object_pose("xd");
std::cout<<"Nope"<<std::endl;
std::cout << e.what() << std::endl;
}
xd = vi.get_object_pose("xd");
std::tie(A, b) = manager.get_inequality_constraints(q);
controller.set_inequality_constraint(A,b);
//-----------------------------------------------------------
switch(controller.get_control_objective())
{
case ControlObjective::Distance:
{
VectorXd pdesired = vec4(translation(xd));
VectorXd distance(1);
distance(0) = pdesired.transpose()*pdesired;
u = controller.compute_setpoint_control_signal(q, pdesired.transpose()*pdesired);
break;
}
case ControlObjective::Translation:
{
u = controller.compute_setpoint_control_signal(q, vec4(xd.translation()));
break;
}
case ControlObjective::Pose:
{
u = controller.compute_setpoint_control_signal(q, vec8(xd));
break;
}
case ControlObjective::DistanceToPlane:
{
DQ plane_normal = xd.P()*k_*xd.P().conj();
DQ plane_point = xd.translation();
DQ xdesired_plane = (plane_normal + E_ * dot(plane_point, plane_normal));
controller.set_target_primitive(xdesired_plane);
u = controller.compute_setpoint_control_signal(q, VectorXd::Zero(1)); //DistanceToPlane
break;
}
default:
throw std::runtime_error("ControlObjective not suppported.");
break;
}
//q = q + T*u;
//std::cout<<"error: "<<std::endl;
//std::cout<<controller.get_last_error_signal().norm()<<std::endl;
//franka_sim.set_target_configuration_space_positions(franka1_ros.get_joint_positions());
//auto new_u = trajectory_generator_sptr_->compute_new_configuration_velocities(u, T);
//franka_sim.set_target_configuration_space_velocities(new_u);
//franka1_ros.send_target_joint_positions(new_u);
//auto new_u = trajectory_generator_sptr_->compute_new_configuration_velocities(u, T);
//franka1_ros.send_target_joint_positions(q);
franka1_ros.send_target_joint_velocities(u);
}
ros::spinOnce();
}
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
std::cout << "Stopping V-REP simulation..." << std::endl;
vi.stop_simulation();
vi.disconnect();
return 0;
}
catch (const std::exception& e) {
vi.stop_simulation();
vi.disconnect();
std::this_thread::sleep_for(std::chrono::milliseconds(1000));
std::cout << e.what() << std::endl;
return -1;
}
}